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PREFACE 

The results of calculations in this report in tabulated and graphical 
form constitute an important base of a sensitivity analysis intended to 
determine how atmospheric aerosols, over a wide range of size parameters 
and complex refractive index values, limit the battlefield effectiveness 
of military electro-optical surveillance, target designators, and commu- 
nications systemso 

The authors acknowledge Dr0 Marvin Querry, Department of Physics, Univer- 
sity of Missouri-Kansas City, and Drc Dudley Williams, Department of 
Physics, Kansas State University, Kansas, who supplied raw data on complex 
refractive indexes of atmospheric constituents«. We also acknowledge the 
help of Dr. Hc J. Auvermann in reducing some of the data to graphical form, 
We gratefully acknowledge Richard Dc H. Low and Charles W. Bruce for care- 
fully reviewing this report„ 



CONTENTS 

Page 

PREFACE 1 

INTRODUCTION 3 

CALCULATIONAL PROCEDURE 4 

EXTINCTION COEFFICIENT AS A FUNCTION OF 
REAL AND IMAGINARY INDEX OF REFRACTION 5 

ABSORPTION COEFFICIENT AS A FUNCTION OF 
THE IMAGINARY AND REAL INDEX OF REFRACTION 7 

Isoabsorption Analysis 9 

Extinction and Absorption as a Function 
of Particle Size Distribution 10 

The Spectral Dependence of Extinction and Absorption 11 

CONCLUSIONS 13 

FIGURES H 

TABLES 25 

REFERENCES 38 



INTRODUCTION 

Interest in the effect of aerosols on radiative transfer in the atmosphere 
has grown considerably in recent years. Aerosols affect earth climate, 
the operation of military electro-optical systems, and high energy lasers. 
With few exceptions, aerosols are modeled as polydispersions of spheres 
of uniform composition,, In fact, there is considerable compositional 
variation of aerosol particles depending on local sources and sinks, mete- 
orological conditions, and geographical locale. An aerosol size distribu- 
tion may consist of several superimposed modes, each mode characterized 
by different refractive indexes and ranges of particle sizes and shapes» 
An obvious way to assess the seriousness of approximating a multicomponent 
aerosol by a single mode is to perform a sensitivity study to investigate 
the effects of aerosol size and refractive index variations (within a 
range of values that might be characteristic of different modes) on scat- 
tering parameterso This is in part the purpose of this report» A related 
and perhaps more important reason for a sensitivity study is that defini- 
tive measurements of aerosol refractive indexes in the middle-infrared 
spectral region and aerosol size distributions are not easy to make and 
consequently are rather sparce. This study reveals what effect errors in 
measurement and uncertainties in values of aerosol refractive indexes and 
size distributions have on predictions of aerosol extinction and absorption 

The radiative effects of atmospheric dust in semiarid regions is an example 
of a research area to which this study applies» Desert aerosols over the 
Southwestern United States have been shown to be multicomponent [1-4]„ 
Mineralogical analyses of the particles are not always available, and even 
when they are, knowledge of particle composition does not necessarily 
imply knowledge of index of refraction» For example, the complex index 
of the great majority of clay minerals which form a considerable fraction 
by mass of desert aerosols is unknown in the 3- to 12-micrometer wavelength 
regime and beyond. Recent measurements by Toon et al. [5] on montmoril- 
lonite -- one of the clay mineral family — indicates that there is con- 
siderable variation in both the real and imaginary components of the re- 
fractive index from 5 micrometers through the middle-infrared» Similar 
variations can be expected for the rest of the clay mineral family. Our 
ignorance of infrared optical constants of desert dust applies to some 
aerosols of anthropogenic origin as well» In addition, uncertainty as 
to the validity of past measurements has been emphasized [6]» 

Similar comments apply to measurements of aerosol size distributions. 
Measurements for sufficiently broad ranges of particle sizes are few, as 
are measurements of specific atmospheric constituents, with some excep- 
tions [7-ll]o 

Thus, because of the experimental difficulties associated with measurement 
of both particle refractive indexes and size distributions, and with the 
consequential lack of data, investigation of the effect of these param- 
eters on aerosol extinction and absorption is a worthwhile exercise» Such 
a study for aerosol extinction has been done previously by Bergstrom [12] 
for a relatively narrow range of refractive indexes and particle sizes» 



Atmospheric aerosol size distributions possess geometric standard devia- 
tions in excess of 1025, the upper limit used in the above worko The 
effect of variations of refractive index on aerosol extinction coefficient 
has been examined by Ha'nel and Bullrich [13] using power law distribu- 
tions* However, their calculations were limited to an upper wavelength 
value of 2 micrometers. A similar study by Will eke and Brockmann [14] 
using lognormal model size distributions is useful only for visible or 
near-visible wavelengths. Atmospheric extinction between 0o55 and 10.6 
micrometers due to soil-derived aerosols has recently been calculated by 
Patterson [15], but the effect of variations of complex refractive index 
on the extinction was not examined. In this work the authors have chosen 
a lognormal size distribution representation for a wide range of realistic 
parameters: namely, geometric mean radii 0C01 <_ r < 10pm, and geometric 

standard deviation le5 < a < 2050 Refractive index values were chosen 
- g - 

at 0.55, 1.06, 3.8, and 10o6 micrometers wavelengths to more than adequately 
cover the range of values of known atmospheric constituents«, 

CALCULATIONAL PROCEDURE 

A modified version of the Mie program of Dave [16] was used for scattering 
calculations  in this study, under the assumption that all   particles are 
homogeneous spheres«    The Mie theoretical  formalisms  have been described 
in well-known works  [17-19] and will  not be discussed here0    The volume 
extinction coefficient a    is calculated according to: 

ae = 

en 

f TIT* *ext (x,m) -^ dr (1) 

N is the number of particles with radius greater than r; Qext  (x,m)  is 

the efficiency factor for extinction and is a function of the particle 
complex index of refraction, m, and the size parameter x = 2-nr/X, the 
ratio of the particle circumference to the wavelength»    The corresponding 
absorption coefficient i-s calculated by replacing the efficiency factor for 
extinction with that for absorptionc 

A lognormal was chosen to represent the particle size distribution for 
several  reasonsc    It has  been shown to represent both desert [3] and urban 
[20] particle size measurements adequately.    In addition, particle size 
distributions  can be well-represented by combinations of lognormal  distri- 
butions  [21]o    The number of particles per logarithmic radius  interval  is 
given by: 

ln(r/r  )""" 
dN 1 

dlnr      V2TT In a 

,     1 
exP {-  2 

In a 
(2) 



where r is the geometric mean radius and a is the geometric standard 

deviation« 

Refractive index values were chosen to span those of the more commonly 
found atmospheric constituents, which are shown in table 1 for visible 
through middle-infrared wavelength regimes. The maximum values in the 
0.55- to 1o06-micrometer and 3- to 5-micrometer bands are attributed to 
carbon particles [22,23], while the extreme values in the 9- to 11- 
micrometer band are due to quartz [24], A somewhat wider range of refrac- 
tive index values was adopted in this work to allow for possible extreme 
variations for the many constituents whose indexes are not yet measured. 

EXTINCTION COEFFICIENT AS A FUNCTION OF 
REAL AND IMAGINARY INDEX OF REFRACTION 

For sake of comparison, extinction and absorption coefficients are  pre- 
sented for a somewhat arbitrary aerosol mass loading of 100yg/m3 and 
density of 2.5 g/cm3, roughly corresponding to a "light" aerosol mass 
loading equivalent to an approximate rural, maritime, or desert aerosol 
(under moderate wind conditions). Although calculations have been per- 
formed at wavelengths 0.55, 1.06, 3.8, 9.3, and 10,6 micrometers, results 
will mainly be presented for 0„55 micrometers, which broadly represents 
the visible to near-infrared regime, and for 10.6 micrometers, which is 
taken to represent approximately the 9- to 12-micrometer spectral range» 

It is important to note that all results (with the exception of the bi- 
modal distribution work discussed later) presented here are for a normal- 
ized mass of lOOyg m"30 The mass, M, of a size distribution of particles 
characterized by the lognormal distribution is given by 

M = 4TT/3 N r3 exp (4Q5 In
2 a )p (3) 

where p is the particle density. 

Thus, the results can be applied to a wide range of atmospheric conditions 
varying from a background or "light"  aerosol   loading to a "heavy" aerosol 
loading produced, for example, by a blowing dust, vehicular dust, or bat- 
tlefield debris--providing the size distribution and mass of the aerosol 
particulates are adequately known0 

The effects of real  and imaginary index variations on extinction at these 
two wavelengths  for a wide range of size distribution parameters are shown 
in fig 1  through 80    Changes in extinction by as much as a factor of 10 
to 20 are caused by real  or imaginary index variations at 10.6 micrometers 
(fig 1,  3,  5, 6, 7); whereas, except for distributions of predominately 
submicrometer particles, changes in extinction at 0a55 micrometer caused 



by variations in real and imaginary indexes are less than 20 percent. A 
comparison between the effects of real and imaginary indexes on extinction 
is shown in fig 90 

To demonstrate the utility of these curves, consider the following example: 
Suppose there is a polydisperse aerosol characterized by lognormal param- 
eters r = Oolym, and a    =  2o0, a mass loading of lOOpg m"3 and particle 

density 2.5g crrr3. Further, suppose the imaginary index of the aerosol 
at X = 10.6ym is 0e25; then changes in real index from 102 to 305 cause 
changes in extinction coefficient from 9,9 x 10"3 km-1 to 3.3 x If)"3 km"1 

(fig l)o Similarly, for the same size distribution of particles having 
real index 1.8 at X = 10o6pm, changes in imaginary index from 0.05 to 1.0 
result in extinction coefficient changes from 1.6 x 10"3 km"1 to 
2c5 x 10-2 km"1 (fig 5). Again, although the calculations are only for 
0.55- and 10.6-micrometer wavelengths, the range of complex indexes repre- 
sents the entire visible to near infrared and 9- to 11-micrometer spectral 
regions. 

Some of the tabulated results are presented here as a function of the 
parameter r /X (geometric mean radius/wavelength). This parameter r /X 

y y 
has no physical meaning as such and is merely used for the convenience of 
the reader who wishes to examine the effect of both the real and imaginary 
index in terms of the lognormal size distribution parameter r at selected 

wavelengths X, at only the specific r /X values given,. 

The effect of real index on extinction is generalized in table 2 where the 
ratio of extinction coefficient at real index n compared to the value at 
n = 1.33 is tabulated as a function of r /X values from 0.01 up to 1.0, 

for values of a    of 1.5, 2o0, and 2Q5 for imaginary index value of 0.05. 

The real index has greatest effect for the narrower distributions and for 
r /X < 0o25, where extinction can vary by up to a factor of about 20 with 

change in real index0 However, extinction is relatively insensitive (with- 
in a factor of 3 and 30 percent for a = 105 and >_ 2C0, respectively) 

to variation in real indexes for r /A ■> 0o25o 

The effect of imaginary index on extinction is generalized in table 3 where 
extinction at imaginary index k is compared to the value of 0o05 for a 
range of r /X values from 0.01 to lo0 for real index equal to 1.6«, 

Briefly, extinction is invariant to imaginary indexes (to within ±20 
percent), and independent of particle size distribution spread, for r /A _> 

0o25o Extinction is independent (to within ±14 percent) of imaginary 

indexes for k < 1 D0 for a > 2.0 and r/X  > 0Jo Variation in extinction 
-      g        g - 

by up to a factor of 20 is caused by changes in imaginary index for 

r /A <_  0.1» though these large variations decrease with increasing dis- 

tribution spreadc 



ABSORPTION COEFFICIENT AS A FUNCTION OF 
THE IMAGINARY AND REAL INDEX OF REFRACTION 

The absorption coefficient is a linear function of imaginary index of 
refraction for a medium with homogeneous optical properties as expressed 
by the well-known Lambert absorption law. Use has been made of this law 
by several workers including Volz [25,26], Fischer [27], and Schleusener 
et al. [28] to infer values of imaginary index from bulk absorption co- 
efficients. This approach may well introduce errors for absorbing con- 
stituents which do not possess uniform properties and which do not con- 
stitute all of the bulk material. Some of the associated problems were 
first pointed out by Bergstrom [29] and more recently by Toon et al. 
[6], Waggoner et al. [30] showed that the absorption coefficient is 
linearly dependent to within a factor of 2 on imaginary index for k <  0.05 

and size parameter x (x = 2TT r/A where r is the particle radius and A is 
the radiation wavelength) is _< 80 However, many atmospheric constituents 

possess k values in excess of 0.05 particularly in the middle-infrared. 
For example, the departure from linearity of absorption coefficient versus 
k was noted by Bergstrom [29] for carbon particles (k = 0o66) Another 
purpose of this report is to illustrate some of the problems associated 
with inferring imaginary index from absorption coefficients measured in 
a nonhomogeneous medium0 

Figures 10 through 13 illustrate the effect of imaginary indexes on the 
absorption coefficient at wavelengths 0o55 and 10.6 micrometers for typ- 
ical particle size distribution with geometric mean radius r of 0.1, 

0.25, 0o5, and 1o0 micrometers with geometric standard deviation a vary- 

ing from 105 to 2050 It is evident that absorption is no longer linearly 
dependent on imaginary index for increasing values of a , This non- 

linear behavior results in a lower absorption than predicted by the Lambert 
absorption law0 

Figure 14 shows a similar effect for wavelength 3.8 micrometers. For 
broad distributions the absorption coefficient is not linear with imagi- 
nary index, so that inference of imaginary index from the measurement of 
aerosol absorption, as done by Volz [25,26] and Schleusener et al, [28] 
should be viewed with skepticism, particularly for the middle-infrared 
spectral region0 This point has also been raised by Toon et al. [6], 

The values of imaginary index k« below which the absorption coefficient 

varies linearly with imaginary index are shown in tables 4 and 5 for wave- 
lengths 3.8, and 10.6 micrometers, respectively. The tables show that as 
the particle size distribution becomes broader, the range of k over which 
absorption is linear becomes narrower. Values of imaginary index below 
which the absorption coefficient varies linearly (within 20 percent) with 
imaginary index is shown in generalized form in table 6. 



Values of imaginary index k above which the absorption is constant (within 

±40 percent) with imaginary index are shown in tables 7 and 8 for wave- 
lengths 3.8 and 10.6 micrometers, respectively,. The majority of k values 

for 3C8 micrometers wavelength are in excess of typical values of imagi- 
nary index measured in this wavelength regime0 However, at 10o6 micro- 
meters wavelength, values of kc lie within realistic values of k at this 
wavelength, particularly for the broader particle size distributions 

(r > 0.25, a £ 2.0). Thus, a measurement of absorption does not uniquely 

determine the imaginary index for a broad distribution, even if the particle 
size distribution and real index are known. 

Values of k above which the absorption coefficient is constant (to within 
±40 percent) with imaginary index are shown in table 9 for real index =1.8. 
Note that the absorption becomes relatively insensitive to k at realisti- 
cally low values of k (particularly for the 8- to 12-micrometer region) 
for the two broadest distributions, for r A £0olo This insensitivity 

will also apply to highly absorptive constituents such as carbon in the 
visible to near-infrared regime. 

The effect of imaginary indexes on absorption is shown in generalized form 
in table 10 where the ratio of the volume absorption coefficient at imagi- 
nary index k is compared to k = 0o05 for real index n*= 1060 The table 
shows that for the narrowest distributions (for Q = lc5) the absorption 

is linear with imaginary index up to k = 1„0 for r /\  < 0o05o In addition, 

the absorption does not vary by more than a factor of about 2 for k > 0o025, 

irrespective of distribution spread for r A > 0.25o 

The effect of real index on absorption is shown in fig 15 through 18 for 
realistic size distribution parameters and for \  = 0.55ym and 10o6ymo A 
comparison of the effects of the real and imaginary index on absorption 
is shown in fig 190 The influence of real index on absorption is reduced 
for decreasing wavelength as shown in fig 20 for \  = 3.8ym and as also 
evidenced in fig 15 through 180 

Ratios of absorption for a range of real index values are shown in tables 
11 and 12 for X  = 308ym and 10.6ymo A generalized analysis of the effect 
of real index on absorption is summarized in table 13 where the absorption 
coefficient at real index n is compared to the value at n = lc330 In 
general, the absorption does not vary by more than a factor of about 2 
with the exception of the larger real index values at the lower values of 
r/X. 



The effects of real and imaginary index variations on both extinction and 
absorption at X  = 10.6ym are in general severely affected by the form of 
the size distribution as seen in fig 1 through 20. An exception can be 
seen in fig 10. In this case, variation of absorption coefficient with 
imaginary index is relatively unaffected by changes in size distribution 
parameterSo In contrast to the results at X =  10.6pm, at X  = 0.55ym, the 
effects of complex index variations are not greatly affected by changes 
of the size distribution parameters. The prime reason for the strong 
dependence of extinction and absorption on refractive indexes in the 
middle-infrared as compared to visible wavelengths is that the range of 
both real and imaginary indexes is much greater in the middle-infrared 
than in the visible. For broad distributions, the dependence of extinction 
and absorption on refractive indexes is reduced throughout this spectral 
range. 

Isoabsorption Analysis 

Isoabsorption analyses were performed for several values of absorption 
coefficient which were normalized to a mass loading of lOOyg m-3 for 
wavelengths 10o6ym and 308ym. Some sample results are shown in fig 21 and 
22 at X  = 10.6ym for r = lo0ym and lOum and a    = 105. Here isoabsorption 

curves are drawn for three widely different absorption values (each normal- 
ized to lOOyg m-3) of 3 x 10"4 km"1, 2.4 x 10~3 knr1, and 1.75 x 10~2 km"1. 
The isoabsorption values are kept constant to within ±15 percent. A con- 
clusion from these results is that in some cases variations of over two 
orders of magnitude in imaginary index of refraction can occur for a vari- 
ation in real index from 0.1 to 8o0o In addition, for some absorption 
values two values of imaginary index are possible for a single real index 
value0 The results of the isoabsorption analysis are summarized in tables 
14 and 15 for wavelengths 10o6 and 3Q8 micrometers for a wide range of 
particle size distributions. The uncertainty in imaginary indexes is con- 
siderably reduced by decreasing the range of real index. The analysis for 
X  = 3.8ym in table 15 shows that over a wide variation in particle size 
distribution parameters (r and a   varying from O.lym to 1 .Oym with a    vary- 

ing from 1.5 to 2.25), and for a possible uncertainty in real index values 
from 1.2 to 3.0, the ratio of imaginary index from minimum to maximum value 
can attain a factor of 5. If the uncertainty in real index is from 1.2 to 
2.0, this factor is reduced to 3.5. 

A similar analysis conducted for X  = 0.55ym indicated that over realistic 
values of particle size distribution parameters (r from 0.1pm to 1.Oym, 

and a varying from 105 to 2.25), uncertainty in imaginary index by up 

to a factor of 3o0 is caused for a range of real index from 1.33 to 2Ja 
If the range is reduced to 1.7, the uncertainty factor is reduced to a 
maximum value of 1060 



A comparison for two isoabsorption values of 2o0 x 10"^ and 106 x 10"
3 km"1 

for the three size distributions of geometric mean radii of 0olpm, 160pm, 
and 10.0pm is shown in table 16 for A = 10o6pm. The results imply that, 
for the same variation in real index, significantly different ranges of 
imaginary index are obtained for the different size distributions0 This 
implies that knowledge of the size distribution is imperative to accurately 
infer the values of the imaginary index from absorption measurements. In 
addition, knowledge of the real index is also necessary to evaluate the 
imaginary index, without which errors by more than an order of magnitude 
can occur in the interpolation of imaginary index even with a knowledge 
of the particle size distribution0 

Extinction and Absorption as a Function 
of Particle Size Distribution 

Some results have already been presented on extinction as a function of 
particle size [31,32], However, the analysis was limited to an upper 
limit of 2.0 for a . In addition, no results were previously presented 

for absorption0 Sample results are shown in fig 23 for A = 0.55pm and 
10o6pm for extinction and absorption as a function of r „ Inferred 

extinction values differ by more than an order of magnitude. Distribu- 

tions having 0o02 < r <_  0.2ym at 0o55pm wavelength and 0o2 < r« < 2ym 

at 10.6pm yield maximum extinction values. For values of r /A > 0.5, 

Jennings and Gillespie [32] have shown that the extinction coefficient 
a    has the dependence a    ~ 1/r exp (-2„5 In2 a  ). 

The effect of geometric mean radius upon the absorption coefficient is 
shown in fig 24 for 3.8pm wavelength. Absorption is constant to within 

a factor of 3 for r < l05pm, 0o4pm for k = 0o025 and 0.25, respectively, 

for A = 3,8pm„ For wavelength of 10,6pm, absorption is constant to 

within a factor of 3 for r <_ l07pm, l02ym, and 0o8pm for k = 0ol, 0o25, 

and 0.5, respectively. Absorption varies approximately as 1/r for r > 

5o0ym, 3o5pm, and 2.5pm for k = 0ol, 0o25, and 0o5, respectively, for wave- 
length of 10o6ynu Knowledge of the particle size distribution is very 
important in determining the value of the absorption for geometric mean 
radii in excess of a few micrometers0 

The ratio of absorption to extinction for a wide range of realistic parti- 
cle size distributions is shown in table 17 as imaginary index is varied 
from 0c005 up to lo0. Three wavelengths of 0o694, 3e8, and 1006 microme- 
ters were used* Absorption constitutes about 50 percent of the extinction 

for r > 1oOpm for the majority of imaginary index values» 

10 



The Spectral Dependence of Extinction and Absorption 

The effect of wavelength on the extinction coefficient is first examined 
for unimodal distributions. Particle size distributions with r =0.1, 

0c5, and lo0 micrometers were chosenD Real index values of 1.6, 106, 105, 
and lc8 and imaginary index values of 0.01, 0o01, 0.025, and 0.5 were as- 
signed to wavelengths 0.55, 1.06, 3.8, and 10o6 micrometers, respectively. 
The refractive index values were considered to realistically represent 
typical values of the atmospheric aerosol. The variation of extinction 
with wavelength for narrow distributions (a = lc5) is shown in fig 25(a). 

One sees a gradual transition from a strong dependence of extinction on 
wavelength (A-2-5 up to 308jjm) to almost neutral extinction for r = lum. 

Similar plots are drawn in fig 25(b) for broader distributions (a = 2C5), 

for the same r values as in fig 25(a)o The figure shows that the extinc- 

tion is neutral with respect to wavelength for the two larger r values. 

It should be noted that any inferences made between extinction and wave- 
length from this figure are only valid at the discrete wavelengths used0 

To demonstrate the spectral dependence of extinction for a range of refrac- 
tive index values, the authors have chosen to limit this study to desert 
aerosolSc Two bimodal distributions representative of measurements by 
Sverdrup et al„ [33], Patterson and Gillette [3], Junge and Jaenicke [34], 
and De Luisi et al„ [35] have been constructed for. this spectral study, 
referred to here as "light" and "heavy" aerosol loadings. The parameters 
for these distributions appear in table 18Q Desert aerosols are known 
[1»4,36] to contain quartz, montmorillonite, kaolinite, illite, calcite, 
sodium nitrate, ammonium sulfate, and carbon; therefore the range of 
extinction coefficients resulting from variation of refractive indexes 
over the gamut of values measured for the majority of these constituents 
has been determined for the visible, 3 to 5 micrometers, and 9 to 11 
micrometers spectral regions0 

Ammonium sulfate and carbon have been assumed to be present only in the 
small particle mode of the "light" aerosol, consistent with findings of 
Blanco and Mclntyre [2], Lindberg and Gillespie [4], and Cartwright et al„ 
[7]c Typical and extreme of index values are taken (or estimated, in the 
case of typical values) from the works of Fischer [37,38], Lindberg and 
Laude [39], Toon et al0 [5,6], Spitzer and Kleinman [24], Ha'nel [40], 
Foster and Howarth [23], Dalzell and Sarofim [22], Querry et al. [41], 
Downing et al. [42], and Grams et al0 [43], The resulting spectral vari- 
ations due to these refractive index variations are shown in fig 26; the 
circles mark the extinction values corresponding to the typical refractive 
indexes, and the minimum and maximum values of extinction obtained are 
indicated by the "error" barsc Values of complex refractive indexes 
giving minimum and maximum extinction are given in table 19; also given 
are the typical index valuesc For example, at 10o6 micrometers, minimum 
extinction for the "light" aerosol loading is obtained with a combination 
of ammonium sulfate (m = 1.99 - 0.06 i) and sodium nitrate (m = 1019 - 0.07 i) 
for the small and large particle modes; and the maximum extinction from a 
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combination of carbon (m = 2.04 - 1„28 i) and quartz (m = 2.18 - 0.02 i) 
for the two modes. Variation in the complex refractive index causes only a 
small change in extinction (less than 15 percent), in agreement also with 
the work of Gillespie et alo [44], For the "light" aerosol loading, extinc- 
tion spectral dependence is very  roughly 1/A, as variation in optical 
constants in the 4- to 10-micrometer wavelength regime results in signifi- 
cant (up to a factor of 10) extinction uncertainties« Neutral extinction 
prevails for the "heavy" aerosol loading, except for the 10-micrometer 
region where refractive index variations cause moderate (factor -3) 
uncertainties in extinction., 

No results are presented here for "moderate" aerosol loadings typified by 
mass loadings in the order of 5 x 102 to 5 x 103 yg/m3 and described by 
Patterson and Gillette [3]0 However, an examination of typical size 
distribution parameters for these moderate aerosol conditions [3] indicates 
that the size distribution values roughly correspond to those of the heavy 
aerosol loading. Consequently, the same conclusions based on the heavy 
aerosol case will also approximately apply to the moderate aerosol case. 

The values for extinction, km"*1, are given in table 20 for the small and 
large particle modes (parameter values given in table 18) for the "light" 
and "heavy" aerosol loadings. The corresponding complex refractive values 
appear in table 19. The use of table 20 allows one to examine the effect 
of the variation of loadings on extinction values„ 

Typical, minimum, and maximum absorption values corresponding to a gamut 
of complex refractive values shown in table 21 are given in table 22Q The 
resulting absorption for both the "light" and "heavy" aerosol loadings is 
shown in fig 27. The figure shows that uncertainty in index of refraction 
values can cause at least an order of magnitude variation on absorption for 
both the "light" and "heavy" aerosol case. The larger degree of uncertainty 
as compared to the extinction case is primarily due to the strong dependence 
of absorption on imaginary index. 

The reader is reminded that all results presented here are for polydisper- 
sions of spherical particles, and thus caution should be exercised in 
applying them to irregular garticles. However, for particles large com- 
pared to the wavelength, Chylek [45] has shown that the extinction cross 
section of arbitrarily shaped randomly oriented irregular particles is 
always greater than the extinction cross section for a sphere of equal 
volume. Consequently, in the large particle limit, these results may be 
used as a lower bound for extinction by nonspherical particles of known 
volume. In the small particle limit, angular scattering measurements on 

slightly irregular particles by Pinnick et al. [46] and Zerul 1 [47], and 
extinction efficiency measurements by Greenberg [48] suggest they may be 
approximated by spheres of equal area or volume, providing size param- 
eters are less than 30 Hence, the results presented here might be applied 
to polydispersions of slightly irregular particles, providing those pre- 
dominant in extinction have size parameters less than 3. 
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CONCLUSIONS 

The extinction coefficient of polydispersions of spherical aerosols with 
a fixed mass loading is independent of both real and imaginary index to 
within about 20 percent for the majority of realistic size distributions 
in the visible and near-infrared wavelength regime (0.55pm <_ A <_  l,06ym)o 

In the middle-infrared (9.3ym <_ A £ 10,6iJm) extinction is more strongly 

dependent on refractive indexes, particularly the real index, as changes 
in extinction of up to an order of magnitude are caused by variation of 
real index over the gamut of realistic values. The prime reason for the 
strong dependence of extinction and absorption on refractive indexes in 
the middle-infrared as compared to visible wavelengths is that the range 
of both real and imaginary indexes is much greater in the middle-infrared 
than in the visible0 The dependence of both extinction and absorption on 
optical constants is mitigated as the particle size distribution is 
broadened. 

Absorption is not in general linear with imaginary index, especially for 
broad distributions of particles; consequently, a measurement of the ab- 
sorption coefficient does not uniquely determine the imaginary index» In 
general, the size distribution and the real index of the particles must 
be knownQ Isoabsorption plots of imaginary index and real index strongly 
suggest that variations by over two orders of magnitude can occur in the 
imaginary index if the real index is unknown at 10.6pm, However, if real 
index is uncertain over a more realistic range from 1„0 to 3.0 at A = 10.6pm, 
the uncertainty in imaginary index is reduced to factors from between 3 to 5. 
An increase in particle size distribution spread tends to reduce the over- 
all variation in imaginary index„ 

In the middle-infrared, real index significantly influences the absorption, 
and this influence is enhanced for distributions of predominately sub- 
micrometer particles* The dependence of extinction on particle size is 
mitigated as particles become more absorptive» Absorption is generally 
less dependent on size distribution than is extinction. 

Neutral extinction results for a '"heavy" aerosol loading characterized by 
a bimodal distribution, whereas an approximate 1/A wavelength dependence 
predominates for a "light" aerosol loading» Uncertainties by more than 
an order of magnitude occur in absorption for a similar analysis. Un- 
certainty in the values of optical constants can cause large deviations 
in calculated extinction and absorption in the middle-infrared, and this 
underlines the necessity of obtaining measurements of both real and imagi- 
nary indexes of more atmospheric constituents, such as kaolinite and 
illite, in this spectral range. 
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Figures 1  through 4.    Extinction as a function of real  index of refraction 
for wavelengths 0.55ym and 10.6um.    The mean denotes 
the geometric mean radius r    and SIGMLG is the geo- 

metric standard deviation a .    The aerosol mass load- 

ing is lOOyg m"3 for a particle density of 2.5 g cm"3. 
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TABLE 1*  RANGE OF MEASURED VALUES OF OPTICAL CONSTANTS OF 
SEVERAL ATMOSPHERIC CONSTITUENTS 

Wavelength Range 
(um) Real Index Imaginary Index 

0o55 to 1.06 

3.0 to 5„0 

9,0 to 11.0 

1.32 to 2.1 

1..2 to'3.,1 

0J1 to 7.49 

- 0 to 0.8 

~ 0 to 1.82 

- 0 to 7.51 

TABLE 2. tVOLUME EXTINCTION COEFFICIENT AT REAL INDEX n 
VOLUME EXTINCTION COEFFICIENT AT REAL INDEX n = 1.33 

Geometric Mean Radius, 

Wavelength 

rg/A 
0.01 0.025 0.05 0.1 0.25 0.15 1.0 

Real  Index n 

1.33 1.0 1..0 1.0 1.0 1.0 1.0 1.0 
1.5 0.89 0.93 1.11 1.59 1.72 1.19 0.93 
1.7 0.77 0.85 1.30 2.60 2.40 1.16 0.90 

G    =   1.5 1.9 0.66 0.78 1.53 3.92 2.74 1.09 0.90 
g 2.2* 0.52 0.71 1.95 6.28 2.82 1.02 0.90 

2.5 0.41 0.66 2.44 8.64 2.68 1.00 0.89 
3.5 0.21 0.61 7.16 12.61 2.26 0.99 0.87 
5.0 0.11 0.68 16.28 11.75 2.17 0.95 0.85 
6,5 0.08 4.37 19.00 10.22 2.10 0.93 0.84 

1.33 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.5 0.94 1.32 1.70 1.59 1.21 1.03 0.97 
1.7 0.89 1.88 2.70 2.12 1.30 1.00 0.96 
1.9 0.85 2.68 3.70 2.50 1.31 0.98 0.96 

o    = 20 2.2* 0.82 4.23 4.90 2.83 1.29 0.96 0.96 
9 2.5 0.82 5.89 5.76 2.98 1.26 0.95 0.95 

3.5 0.91 10.17 7.10 2.98 1.17 0.93 0.94 
5.0 4.17 12.90 7.14 2.76 1.13 0.91 0.93 
6.5 7.33 13.36 6.70 2.61 1.10 0.86 

1.0 

0.91 

1.33 1.0 1.0 1.0 1.0 1.0 1.0 
1.5 1.45 1.63 1.41 1.24 1.06 1.00 0.99 
1.7 2.21 2.31 1.77 1.38 1.08 0.98 0.99 
1.9 3.15 2.84 2.01 1.46 1.07 0.97 0.99 

o    =  2.5 2.2* 4.73 3.47 2.22 1.50 1.05 0.96 0.99 
9 2.5 6.10 3.89 2.33 1.50 1.06 0.96 0.98 

3.5 8.65 4.47 2.38 1.46 1.03 0.95 0.98 
5.0 10.24 4.48 2.27 1.38 0.97 0.93 0.97 
6.5 10.57 4.28 2.16 1.32 0.96 0.92 0.97 

* Applicable Only to Wavelengths > 2ym For n > 2.2 
tlmaginary Index k = 0.05 For All Calculations 
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TABLE 3. VOLUME EXTINCTION COEFFICIENT AT IMAGINARY INDEX k 
VOLUME EXTINCTION COEFFICIENT AT IMAGINARY INDEX k =0.05 

GEOMETRIC MEAN RADIUS  rg 
WAVELENGTH               A 0.01 0.025 0.05 0.1 10.25 0.5 1.0 

Imaginary  Index k 

0.001 0.03 0.09 0.38 0.77 1.03 1.04 0.99 
0.0025 0.06 0.12 0.39 0.77 1.03 1.04 1.00 
0.005 0.11 0.17 0.43 0.78 1.03 1.04 1.00 
0.01 0.20 0.26 0.49 0.81 1.03 1.04 1.00 
0.025 0.50 0.54 0.68 0.88 1.01 1.02 1.00 

ög=1.5 0.05 1.00 1.00 1.00 1.00 1.00 1.00 ! l.oo 
0.10 1.99 1.93 1.63 1.23 0.98 0.96 1.00 
0.25 4.96 4.69 3.52 1.86 0.95 0.83 0.99 
0.50 9.80 9.22 6.59 2.78 !0.96 0.33 ! 0.98 
1.0 18.13 17.25 12.26 4.30 11.05 0.85 ; l.oo 
2.0* 20.37 20.78 17.46 6.08 1.21 0.92 ! 1.06 
4.0 5.95 7.49 10.61 5.50 1.17 0.90 ! 1.05 
6.0 2.20 3.73 7.15 4.58 1.06 | 0.83 0.99 
8.0 1.21 2.63 5.80 4.10 1.00 1 0. 79 0.95 
0.001 0.13 '0.59 0.89 1.00 l.oS i 1.02 l.OC 
0.0025 0.15 0.61 0.89 1.00 1.03 1.02 1.00 
0.005 0.20 0.63 0.90 1.00 1.03 1.01 1.00 
0.01 0.29 0.67 0.91 1.00 1.03 1.01 1.00 
0.025 0.56 0.79 0.94 1.00. 1.02 1.01 1.00 
0.005 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

ag=2.0 0.10 1.89 1.41 1.11 1.00 0.96 0.99 1.00 
0.25 4.54 2.57 1.43 1.04 0.92 0.95 0.99 
0.50 8.89 4.40 1.90 1.14 0.90 0.93 0.99 

1          1.0 16.63 7.58 2.73 1.37 0.94 0.94 1.00 
2.0* 20.45 10.60 3.67 1.67 1.03 1.00 1.05 
4.0 7.94 7.54 3.21 1.59 1.00 0.99 1.06 
6.0 4.14 5.68 2.69 1.42 0.93 0.94 1.01 
8.0 2.98 4.88 2.42 1.31 0,8? 0.90 0.98 

1          0.001 0.70 0.96 I 1.00 1.05 1.00 1.01 1.00 
0.0025 0.71 0.96 1.00 1.05 1.01 1.01 1.00 
0.005 0.73 0.96 1.00 1.05 1.01 1.01 1.00 
0.01 0.76 0.97 1 1.00 1.05 1.01 1.01 1.00 
0.025 0.85 0.98 1.00 1.04 1.01 1.00 1.02 
0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

ag=2.5 0.10 1.29 1.05 1.01 1.01 0.98 0.99 1.00 
0.25 2.13 j 1.21 1.03 0.99 0.95 0.93 1.00 
0.50 3.42 1.49 1.12 0.99 0.93 0.97 1.00 
1.0 5.66 2.01 1.33 1.08 0.95 0.98 1.01 
2.0* 7.71 2.61 1.61 1.23 1.02 1.03 1.04 
4.0 5.58 2.29 1.51 1.19 1.01 1.03 1.05 

1          6.0 4.28 I 1.94 1.34 1.09 0.95 0.99 - 
1          8.0 3.72 11.76 1.24 1.03  | 0.91 0.96 - 

♦Applicable only to wavelengths > 2 ym for k _> 2.0. 

(real index = 1.6) 
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TABLE 4. VALUES OF IMAGINARY INDEX ka BELOW WHICH THE ABSORPTION COEFFICIENT 
VARIES LINEARLY (TO WITHIN 20%) WITH IMAGINARY INDEX. 

WAVELENGTH = 3„8um;      REAL INDEX = 1.5 

Geometric Mean Radius 
r (pm) 

Geometric Standard 
Deviation (o ) 

0,1 
OJ 
0.1 

K5 
2.0 
2,5 

1.0 
1.0 
0.05 

0,25 
0„25 
0.25 

1.5 
2.0 
2.5 

1.0 
0.1 
0„05 

0..5 
0„5 
0.5 

1.5 
2.0 
2„5 

0,25 
0,05 
0.01 

1.0 
loO 
1.0 

1.5 
2.0 
2.5 

0.1 
0.025 
0,01 

TABLE 5C VALUES OF IMAGINARY INDEX k«, BELOW WHICH THE ABSORPTION COEFFICIENT 
VARIES LINEARLY (WITHIN 20%) WITH IMAGINARY INDEX k. 

WAVELENGTH = 10.6um;   REAL INDEX = 1.8 

Geometric Mean Radius 
rg(um) 

Geometric Standard 
Deviation (o ) 

0.1 
f)J 
0,1 
0.1 

1.5 
2.0 
2,5 
3.0 

1 ,0 
1.0 
0.25 
0.1 

0.25 
0.25 
0,25 
0„25 

1.5 
2,0 
2 5 
3.0 

1 0 
0.5 
0,1 
0.025 

03 
0.5 
0.5 
0.5 

1.5 
2.0 
2.5 
3.0 

1 0 
0.1 
0.05 
0.01 

0.75 
0.75 
0.75 
0„75 

1.5 
2 0 
2.5 
3.0 

1.0 
0.1 
0.025 
0.01 

1.0 
1.0 
1.0 
1.0 

1.5 
2.0 
2,5 
3.0 

0.5 
0.05 
0.01 
0.01 

5,0 
5.0 
5.0 

1.5 
2.0 
2.5 

0 025 
0.01 
0„005 
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TABLE 6. VALUES OF IMAGINARY INDEX BELOW WHICH THE ABSORPTION COEFFICIENT 
VARIES LINEARLY (WITHIN 20%) WITH IMAGINARY INDEX k 

REAL INDEX = 1.8 

Geometric Mean Radius (rg/A) 
"^  Wavelength 

Geometric 
Standard Deviation (og) 

0.01 0.025 0.05 0.1 0.5 1.0 

Values of k£ 

1.5 1.0 1.0 1.0 0.5 0.025 0.01 

2.0 1.0 0.5 0.1 0.05 0.01 0.005 

2.5 0.25 0.1 0.05 0.01 0.005 0.001 

TABLE 7a    VALUES OF IMAGINARY INDEX kcAB0VE WHICH THE ABSORPTION COEFFICIENT 

IS CONSTANT (TO WITHIN ABOUT 40%) WITH IMAGINARY INDEX. 
WAVELENGTH = 3.8ym;      REAL INDEX = 1 ,5 

Geometric Mean Radius 
r (ym) 

Geometric Standard 
Deviation (a ) 

0.1 
0.1 
0.1 

1.5 
2.0 
2„5 

1.0 
1,0 
Ou5 

0„25 
0.25 
0.25 

1Q5 
2.0 
205 

1.0 
0.5 
0.25 

0.5 
0.5 
0.5 

0.5 
0.25 
0.1 

1.0 
1.0 
1.0 

1.5 
2.0 
2.5 

0„25 
0.1 
0.05 
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TABLE 8. VALUES OF IMAGINARY INDEX kc ABOVE WHICH THE ABSORPTION COEFFICIENT 

IS CONSTANT (TO WITHIN 40%) WITH IMAGINARY INDEX 
WAVELENGTH = 10.6um;   REAL INDEX =1.8 

Geometric Mean Radius Geometric Standard 
r (vun) Deviation (o ) 

0.1 1.5 
0.1 2,0 
0.1 2.5 
0.1 3 0 

0„25 1.5 
0.25 2.0 
0.25 2.5 
0o25 3.0 

0.5 1.5 
0.5 2.0 
0.5 2.5 
0.5 3.0 

0.75 1.5 
0.75 2.0 
0 75 2.5 
0.75 3,0 

1.0 1.5 
1.0 2.0 
1.0 2.5 
1.0 3.0 

5,0 1.5 
5.0 2 0 
5U0 2.5 

1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
0.5 
0.25 

1.0 
1.0 
0.25 
0.25 

1.0 
0.5 
0.25 
0.1 

1.0 
0„25 
0.1 
0.1 

0.1 
0.05 
0.025 

TABLE 9. VALUES OF IMAGINARY INDEX kc ABOVE WHICH THE ABSORPTION COEFFICIENT 

IS CONSTANT (TO WITHIN 40%) WITH IMAGINARY INDEX 
REAL INDEX = 1.8 

Geometric Mean Radius r 

^""^-^ayelength    X 

0.01 0.025 0.05 0.1 0.5 1.0 

Geometric              ^ 
Standard Deviation °g Values of kc 

1.5 1.0 1.0 1.0 1.0 0.1 0.05 

2.0 1.0 1.0 1.0 0.25 0.05 0.025 

2.5 1.0 0.5 0.25 0.1 0.025 0.01 
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TABLE 10 

w 

VOLUME ABSORPTION COEFFICIENT AT  IMAGINARY  INDEX k = 0„05 
• 

Geometric Mean Radius 
r3/A    0,01 Wavelength 0.025 0.05 0.1 0.25 0.5 1.0 

Imaginary  Index k 

0.001 0.02 0,02 0.02 0,02 0.03 0.03 0.05 
0.0025 0,05 0.05 0,05 0.05 0.06 0.08 0.12 
0o005 0,10 0,10 0.10 0.11 0.13 0,16 0,23 
0.01 0,20 0.20 0.20 0.21 0,24 0.30 0.39 
0.025 0.50 0,50 0.50 0..51 0.56 0.63 0.73 
0o05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

o    = 1,5          0.10 2,00 2,00 1.99 1.90 1,63 1.38 1.18 
3                      0o25 4,98 4.97 4.87 4.18 2.55 1.68 1.22 

0.50 9,84 9.82 9.43 7,01 3,06 1.69 1.17 
IcO 18,21 18,32 17.26 10.63 3.27 1.61 1.09 
2.0* 20,43 21.60 21,94 12.13 2.91 1.36 0.90 
4.0 5,93 7.11 8.87 5.78 1.44 0.70 0.49 
6.0 2.16 3,13 4.03 2.74 0.72 0.36 0.26 
8.0 1,17 1,99 2.38 1.56 0.42 0.21 0.15 

0,001 0.02 0.02 0,02 0.03 0.04 0.06 0.09 
0.0025 0.05 0.05 0,06 0.06 0.09 0.13 0,19 
0.05 0.10 0.10 0.11 0.13 0,17 0.23 0,34 
OoOl 0.20 0,20 0.22 0.25 0.32 0.40 0.54 
0.025 0,50 0,51 0.53 0.57 0.65 0.73 0.83 
0o05 1,00 1.00 1.00 1.00 1.00 1.00 1,00 

o    = 2.0          0.10 2,00 1.-96 1.82 1.63 1.37 1.20 1.08 
9                      0,25 4,07 4,62 3,77 2,65 1,70 1.29 1.09 

0.50 9,79 8,50 5.72 3.41 1.80 1.27 1.05 
loO 18,22 14.54 8.24 4.06 1.77 1.18 0,96 
2,0* 21.67 17.62 9,13 3,95 1.52 0.98 0.78 
4.0 7.26 7,39 4.24 1,94 0.78 0,53 0.44 
6,0 3.14 3.41 2.02 0.95 0.40 0.28 0,24 
8o0 1.92 2,00 1.16 0,55 0.23 0.16 0,14 

0.001 0,02 0,02 0.03 0.04 0.06 0.10 0.16 
0o0025 0.05 0.06 0.07 0.09 0.14 0.21 0.33 
0o005 0,10 0.12 0.14 0.18 0.25 0.36 0.51 
OoOl 0.21 0.23 0.27 0.32 0.43 0.55 0.71 
0,025 0.51 0.55 0,59 0.65 0,75 0.83 0.92 
0,05 1.00 1,00 1.00 1,00 1.00 1.00 1.00 

o    = 2,5          0.10 1„92 1,72 1,55 1 ,39 1.20 1.09 1.03 
9                      0,25 4,37 3.15 2.36 1,80 1.32 1.11 1.02 

0.50 7,76 4.59 2.96 2.00 1,31 1.08 0,99 
1,0 12.87 6.28 3.50 2.09 1,24 0.99 0.90 
2,0* 15,21 6.76 3.43 1.87 1.03 1.81 0.71 
4,0 6,35 3.03 1.67 0.95 0.55 0.45 0..41 
6.0 2.93 1.50 0.32 0.48 0.29 0.24 «_ 
8.0 1.72 0.87 0.48 0.28 0.17 0.15 - 

*Applicable Only to Wavelengths > 2ym For k < 2.0, Real Index = 1.6 

V 
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TABLE 11o VALUES OF THE RATIO OF ABSORPTION COEFFICIENTS 
aA ^/o^n  = lo4^ F0R REALISTIC SIZE DISTRIBUTIO 
IMAGINARY INDEX k = 0,025; WAVELENGTH A = 308ym 

a H (n)/oA (n = 1.4} 

rg 
= 0.1pm rg 

= 0.25pm rg 
= 0.5pm rg 

= 1.0pm 

n/og 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 

1.4 1.0 1 .0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.7 0.82 0.97 1.25 0.93 1.26 1.23 1.23 1.30 1.15 1.36 1.20 1 .06 

2.0 0.66 1.03 1.48 0.89 1.60 1.44 1.60 1.56 1.22 1.74 1.35 1.07 

2.25 0.55 1.13 1.72 0.96 1.92 1.55 2.05 1.73 1.25 1.98 1.37 1.05 

2.5 0.46 1.34 1.94 1.17 2.22 1.63 2.54 1.84 1.26 2.13 1.37 1 .03 

3.0 0.33 2.03 2.33 1.85 2.75 1.71 3.52 1.96 1.24 2.16 1.33 0.98 

TABLE 12. VALUES OF THE RATIO OF ABSORPTION COEFFICIENTS 
aA (n)/aA(n =" 1.2) FOR REALISTIC SIZE DISTRIBUTION 
IMAGINARY INDEX k = 0.025; WAVELENGTH A = 10o6um 

GA (n)/aA ^ 
n = 1.2) 

rg 
= 0.25pm rg 

= 0.5pm rg = 0.75pm rg = 1,0pm 

n/og 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 1.5 2.0 2.5 

1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.6 0.77 0.90 1.09 0.84 1.06 1.15 0.93 1.13 1.16 1.02 1.17 1.15 

2.0 0.57 0.83 1.19 0.68 1.15 1.26 0.88 1.28 1.25 1.09 1.32 1.22 

2.5 0.39 0.84 1.32 0.55 1.33 1.35 0.97 1.46 1.29 1.34 1 ,46 1.22 

3.0 0.28 0.98 1.44 0.54 1.53 1.39 1.23 1.59 1.28 1.70 1.52 1.19 

4.5 0.15 1.64 1.62 1.37 1.87 1.32 2.37 1.64 1.13 2.38 1.42 1.02 

6.5 0.32 2.10 1.50 2.69 1.75 1.09 2.53 1.37 0.91 1.97 1.14 0.78 
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TABLE 13 VOLUME ABSORPTION COEFFICIENT AT REAL INDEX n 
VOLUME ABSORPTION COEFFICIENT AT REAL INDEX n = =  lo33 

Geometric Mean Radius VA Wavelength 0.01 0.025 0.05 0.1 0.25 0.5 1.0 
Real  Index n 

1.33 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
1.5 0.89 0.90 0.93 1.04 1.17 1.16 1.06 
1.7 0.76 0.78 0.85 1   11 1  41 K29 1 ,06 

a    -1.5          1.9 0.65 0.64 0.77 1   23 1   64 1   35 1.04 
9                       2.2* 0.51 0 54 0.68 1.55 1   92 1   34 0.99 

2.5 040 0 43 0.62 2.02 2  07 1.30 0.96 
3.5 0.19 0  24 1.46 3.95 1   96 1   15 084 
SO 0.08 017 5 06 5.03 1.67 0.99 0  71 
6,5 0.05 1   88 8  41 4.55 1   50 0  86 0.61 

N   1.33 1   0 1   0 1.0 1   0 1   0 1.0 1   0 
15 0 90 0.97 1   08 1   15 1   13 1.06 1.0 
1.7 0.79 0.94 1.20 1.34 1   21 1.08 0  98 
1   9 0 68 0 95 1   36 1   53 1.30 1   08 0  95 

a    = 2.0          2.2* 0.55 1   03 1   67 1.77 1   33 1.04 0.91 
9                       2.5 0,45 1   18 2.02 1   95 1   32 1   01 0  88 

3.5 0.27 2  41 3  01 3  30 1   30 0.89 0.77 
SO 1   33 4.49 3.74 2.10 1.02 0 75 0  64 
6,5 2-92 5.89 4.81 1.90 0.89 0 64 0.55 

1,33 1   0 1.0 1.0 10 1   0 1.0 1.0 
1.5 0 99 1.11 1.14 1   12 1   05 1   01 0.98 
1.7 1.00 1   26 1.30 1.22 1.08 1   00 0  95 
1.9 1   03 1   42 1.43 1   28 1.08 0.97 0  92 

o    =  2.5          2  2* 1   18 1.67 1.59 1.34 1   06 0.93 0 88 
9                     2.5 1   39 1 .690 1. 70 1.36 1,02 0.89 0.85 

3 5 2  43 2,50 1.86 1   31 0  90 0.79 0  74 
5„0 3 89 2 89 1   81 1   16 0  77 0.66 0 62 
6.5 4 93 2 94 1,67 0  99 0.66 0.56 - 

* Applicable Only to Wavelengths > 2nm For n > 2 2  Imaginary Tndex = 0.05 

TABLE Ho    THE RANGE OF IMAGINARY k,  FOR A RANGE OF REAL INDEX n USING 
A RANGE OF ISOABSORPTION COEFFICIENTS FOR 10o6vim WAVELENGTH 

Imaginary Index Real   Index Isoabsorption Geometric 
k n Value (km-') Standard Deviation 

rg 
= 0.1pm 

0,004 - 0.02 0..1  -  5.0 1.6 x 10-" 2 0 
0.004 - 0.06 1.0 -   3.0 1.6 x lO-'i 2.0 

0.008 - 0,2 0.1  -  7.0 1   6 x io-' 2,0 
0.04    - 0.16 1.0 -   3.0 1  6 x 10-* 2.0 

0,2      -  1.0 0.1  - 4.0 8 x 10-3 2.0 
0.2      - 0.7 1.0 -  3.0 8 x 10-3 2,0 
0.3      -  1.5 0.1  -  3.25 1  2  x 10-' 2.0 
0.3      -  1.0 1.0 -  3.0 

r9 

1.2  x 

= I.Oym 

io-? 2.0 

0.04      -  0„001 0.1  - 3.5 2.4 x }Q"t 1.5 
0.0014 -  0.006 1.0 -  3.0 2.4 x 10-" 1.5 
0.155    -  0.002 0.1  -  4.5 1    X 10-3. 1.5 
0.006    -  0.022 1.0 -  3.0 1    X 10-3 1.5 
0.004    - 0.4 0.1  -  8.0 2 4 x 10-3 1.5 
0.015    - 0.06 1.0 -  3.0 2.4 x 10-3 1.5 

0.02      - 0.8 0.1   -  5.5 6 x 10-3 1.5 
0.005    -  1.5 1.0 -  3.0 6  x 10-3 1.5 
0.1         -  2.0 0.1   - 8.0 2 x IO'2 1.5 
0.4        -  0.6 1.0 - 3.0 2  x 10-2 1.5 

r = 10.0pm 

0.002 -  0.2 0.1   -  6.5 2 <  1C-" 1.5 
0.002 -  0.005 1.0 -  3.0 2 < io-" 1.5 
0.03    -  0.8 0.1  -  8.0 1.6 < IO'3 1.5 
0.03    - 0.09 1.0 -  3.0 1.6 * IO-3 1.5 
0.09    -  0.6 0.1  - 8.0 2.25 <   IO"3 1.5 
0.09    -  0.6 1.0 -  3.0 2.25 < IO'3 1.5 

32 



TABLE 15. THE RANGE OF IMAGINARY INDEX k FOR RANGES OF REAL INDEX n 
USING A SELECTION OF ISOABSORPTION VALUES FOR 3.8ym WAVELENGTH 

Imaginary Index 
k 

Real Index   Absorption Coefficient (km-1)    Geometric Mean 
n      (normalized to mass = lOOpg nr3)  Radius, r (pm) 

Geometric 
Standard 
Deviation-a 

0.005 
0.005 

0.014 
0.014 

0.05 
0.05 

0.085 
0.085 

0.014 
0.014 

0.05 
0.05 

0.085 
0.085 

0*01 
0.01 

0.05 
0.05 

0.085 
0.085 

0.2 
0.2 

0.01 
0.01 

0.065 
0.065 

0.2 
0.2 

0.01 
0.01 

0.05 
0.05 

0.085 
0.085 

0.35 
0.35 

0.01 
0.01 

0.065 
0.065 

0.35 
0.35 

0.015 
0.008 

0.05 
0.025 

0.15 
0.065 

0.3 
0.15 

0.01 
0.013 

0.025 
0.05 

0.05 
0.1 

0.003 
0.007 

0.01 
0.025 

0.02 
0.05 

0.05 
0.1 

0.005 
0.007 

0.025 
0.035 

0.085 
0.085 

0.0025 
0o005 

0.014 
0.02 

0.025 
0.035 

0.1 
0.1 

0.005 
0.006 

0.035 
0.035 

0.1 
0.1 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

1.2 
1.2 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

3.0 
2.0 

5 x 
5 x 

io-4 

io-4 

1.6 x 
1.6 x 

io-3 

io-3 

5.0 x 
5.0 x 

IO"3 

io-3 

1.0 x 
1.0 x 

io-2 

IO"2 

1.6 x 
1.6 x 

io-3 

io-3 

6.0 x 
6.0 x 

io-3 

io-3 

1.0 x 
1.0 x 

io-2 

io-2 

1.6 x 
1.6 x 

io-3 

io-3 

6.0 x 
6.0 x 

io-3 

io-3 

1.0 x 
1.0 x 

io-2 

IO"2 

2.0 x 
2.0 x 

io-2 

io-2 

1.6 x 
1.6 x 

io-3 

io-3 

6 x 
6 x 

io-3 

io-3 

1.0 x 
1.0 x 

io-2 

io-2 

1.6 x 
1.6 x 

io-3 

io-3 

6.0 x 
6.0 x 

io-3 

io-3 

1.0 x 
1.0 x 

io-2 

io-2 

2.0 x 
2.0 x " 

o-2 

IO"2 

1.6 x " 
1.6 x 

o-3 

io-3 

b.O x 
6.0 x 

io-3 

io-3 

1.0 x 
1.0 x 

IO"2 

o-2 

0.1 
0.1 

1.5 
1.5 

0.1 
0.1 

1.5 
1.5 

0.1 
0.1 

1.5 
1.5 

0.1 
0.1 

1.5 
1.5 

0.1 
0.1 

2.0 
2.0 

0.1 
0.1 

2.0 
2.0 

0.1 
0.1 

2.0 
2.0 

0.5 
0.5 

1.5 
1.5 

0.5 
0.5 

1.5 
1.5 

0.5 
0.5 

1.5 
1.5 

0.5 
0.5 

1.5 
1.5 

0.5 
0.5 

2.25 
2.25 

0.5 
0.5 

2.25 
2.25 

0.5 
0.5 

2.25 
2.25 

1.0 
1.0 

1.5 
1.5 

1.0 
1.0 

1.5 
1.5 

1.0 
1.0 

1.5 
1.5 

1.0 
1.0 

1.5 
1.5 

1.0 
1.0 

2.0 
2.0 

1.0 
1.0 

2.0 
2.0 

1.0 
1.0 

2.0 
2.0 
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TABLE 16. A COMPARISON OF THE VARIATION, IN IMAGINARY INDEX k WITH CHANGES 
IN REAL INDEX FOR A SELECTION OF PARTICLE SIZE DISTRIBUTIONS 
USING TWO ISOABSORPTION VALUES: WAVELENGTH = 10.6ijm 

ISOABSORPTION VALUE = 2 x 10-1» km"1 

Variation in 
Imaginary Index 

k 

Range of Real 
Index 

n 

Geometric Mean 
Radius 

( m) 

Geometric 
Standard 
Deviation 

0.005 - 0.02 
0.001  - 0.03 
0.001  - 0.2 

0.1  - 3.25 
0.1  - 3,25 
OJ  - 3.25 

0.1 
1.0 

10.0 

2.0 
2.5 
1.5 

ISOABSORPTION VALUE = 1.6 x 10-3 km"1 

0.008 - 0.2 
0.002 - 0.25 
0.03    - 0.8 

OJ  - 7.0 
0.1  - 8.0 
0.1  - 8.0 

0.1 
1.0 

10.0 

2.0 
1.5 
1.5 

0.04 - 0.2 
0.01  - 0.04 
0.03 - 0.09 

1.0 - 3.0 
1.0 - 3.0 
1.0 -  3.0 

0.1 
1.0 

10.0 

2.0 
1.5 
1.5 

TABLE 170 THE RATIO OF ABSORPTION TO EXTINCTION FOR A WIDE RANGE OF REALISTIC 
PARTICLE SIZE DISTRIBUTIONS AT WAVELENGTHS 0.694, 3.8, AND 10.6 

 Imaginary Index __ 

Geometric Mean 
Radius  fyim) 

Geometric 
Standard Deviation 

Wavelength 
frw) 

0.1 , 1.5 0.694 
3.8 

10.6 

0.1 2.0 0.694 
3.8 

10.6 

OJ 2.5 0.694 
3.8 

10.6 

0.25 1.5 0.694 
3.8 

10.6 

0.25 2.0 0.694 
3.8 

10.6 

0.25 2.5 0.694 
3.8 

10.6 

1.0 1.5 0.694 
3.8 

10.6 

1.0 2.0 0.694 
3.8 

10.6 

1.0 2.5 0.694 
3.8 

10.6 

5.0 1.5. 0.694 
3.8 

10.6 

5.0 2.0 0.694 
3.8 

10.6 

5.0 2.5 3.8 
10.6 

0.005 0.01 0.05 0.1 0.25   0.5 1.0 

PERCENTAGE OF ABSORPTION/EXTINCTION 

2.6 

3.0 

5.9 

2.7 

6.2 

11.9 

12.2 

18.9 

21JS 

32.2 

38.2 

5.1 
76.1 

21.5 
93.9 
99.2 

35.4 
96.7 
99.6 

56.0 
98.8 
99.8 

5.8 
16.7 

21.9 
50.6 
83.8 

33.9 
67.3 
91.0 

50.2 
82.1 
96.0 

10.5 
6.0 

30.0 
24.7 
26.2 

39.8 
40.0 
42.1 

49.8 
61.0 
64.8 

5.2 
20.7 

20.5 
57.0 
89.0 

32,2 
71.8 
94.2 

48.1 
84.6 
97.4 

11.1 
6.0 

31.8 
24.8 
32.6 

41.5 
40.0 
49.5 

50.0 
61.1 
70.4 

18.9 
7.0 

39.5 
25.1 
19.0 

45.5 
37.6 
31.3 

48.9 
53.7 
51.1 

20.4 
4.8 

44.5 
19.9 
21.5 

49.1 
32.9 
35.6 

50.0 
51.7 
55.8 

28.4 
8.3 

45.8 
27.3 
18.7 

47.6 
38.5 
30.1 

47.5 
50.7 
47.5 

35,8 
15.4 

45^8 
36.0 
26.1 

46.4 
43.9 
36.0 

46.0 
50.1 
48.2 

40.5 
19.4 

45.6 
44.3 
28.5 

45.7 
49.8 
39.6 

45.1 
50.6 
52.1 

43.3 
27,5 

45.3 
46.3 
36.9 

45.3 
48.6 
44.9 

44.7 
48.5 
49.4 

35.4 46.5 
41.8 

47.3 
46.0 

47.0 
47.7 

99.8   99.9 

97.0   97.2 

77.0   79.8 

98.2   98.4 

80.1   82.1 

62.8   66.4 

68.6   71.0 

57.6   59.5 

53.4   52.7 

52.2   49.4 

49.3 

43.8 

46.1 

43.2 

Real  Index ■ 1.6 For  \* 0.6%*m 
- 1.5 For  Jl- 3.%<m 
- 1.8 For  X- 10.6/* 
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TABLE 18. VALUES OF LOGNORMAL PARTICLE SIZE DISTRIBUTION PARAMETERS 
(GEOMETRIC RADIUS r AND GEOMETRIC STANDARD DEVIATION a ) AND MASS 

LOADINGS FOR BIMODAL DISTRIBUTIONS REPRESENTATIVE OF DESERT AEROSOLS 

(a) Light Aerosol Loading 

Mass 
rg ag (yg nr3) 

(um) 

0.05 2.0                    20 

Oe5 2.0                    40 

(b) Heavy Aerosol Loading 

Mass 
rg ag (yg nT3) 

(um) 

0,5 2.25 5 x 103 

15o0 1.6 1 x 104 
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TABLE 19.    VALUES OF COMPLEX REFRACTIVE INDEXES FOR A BIMODAL PARTICLE 
SIZE DISTRIBUTION CHARACTERISTIC OF "LIGHT" AND "HEAVY"  DESERT 
AEROSOL LOADINGS.    TYPICAL VALUES OF COMPLEX REFRACTIVE  INDEX 
ARE PRESENTED, AS WELL AS VALUES WHICH RESULT  IN MINIMUM AND 
MAXIMUM AEROSOL EXTINCTION. 

Light Aerosol \-°t«& Mt*»y Aerosol Loading 

SMII Particle Hodt large Particle Hodt SMII Particle Hodt large Partie • Hodt 

ttavtltngth Attl   Indtx 
Rtfractlo 

of iMglMry  Index 
of Rtfractlon 

Real  Index of 
Refraction 

Imaginary  Ind.« 
of Refraction 

RNI  Index 
Refrectlo 

of Ieaglnary Index 
of Refraction 

Real   Indu of 
Refraction 

laeglnary  Indtx 
of Rtfnctlon 

0.55 Typlctl 
1.52 
1.54 
1.6 

0.01 
0.015 
0.03 

1.52 
1.54 
1.6 

0.0001 
0.003 
0.005 

1.5 
1.5 
1.6 

0.0001 
0.003 
0.005 

1.5 
1.5 
1.6 

0.0001 
0.0001 
0.005 

1.06 
H1n«M 
Typtc*! 

1.5 
1.5« 
1.6 

0.01 
0.015 
0.06 

1.5 
1.5 
1.6 

0.0001 
0.001 
0.005 

1.40 
1.52 
1.60 

0.001 
0.001 
0.005 

1.5 
1.5 
1.6 

0.0001 
0.0001 
0.005 

3.6 
H1n1at» 
Typical 
H*X1M 

1.5« 
1.6 
l.B 

0.02 
0.2 
1.0 

1.25 
1.5 
1.8 

0.001 
0.02 
0.05 

1.25 
1.5 
1.8 

0.001 
0.02 
0.05 

1.25 
1.5 
1.8 

0.001 
0.01 
0.05 

9.3 
Nlnlaxa 
Typio»! 

4.55 
2.5 
2.23 

3.65 
1.5 
1.07 

1.2* 
2.2 
0.86 

0.05 
0.5 
1.44 

1.26 
2.2 
0.86 

0.05 
0.5 
1.44 

3.43 
2.2 
0.86 

7.51 
0.5 
1.44 

10.6 
*1nlM 
Typical 
HtxlM 2.04 

0.06 
1.25 
1.28 

1.19 
1.7 
2.18 

0.07 
0.2 
0.02 

1.19 
1.7 
2.18 

0.07 
0.2 
0.02 

2.18 
1.7 
1.19 

0.02 
0.2 
0.07 

TABLE 20o    VALUES OF EXTINCTION COEFFICIENT  (KM"1)  CORRESPONDING TO THE 
COMPLEX REFRACTIVE  INDEX VALUES GIVEN  IN TABLE 19.    THE CALCU- 
LATIONS ARE FOR A BIMODAL PARTICLE SIZE DISTRIBUTION CHARACTER- 
ISTIC OF "LIGHT" AND "HEAVY"  DESERT AEROSOL LOADINGS GIVEN  IN 
TABLE 18. 

r 

Liqh t Aerosol Loading Hea /y Aerosol Loading 

Wavelength 
(ym) 

Small  Particle Mode 
(mass = 20ug nr3) 

Extinction Coefficient 
(km-M 

Large Particle Mode 
(mass  = 60gg m-3} 

Extinction Coefficient 
(km"1) 

Small   Particle 
(mass  = 5 x lOV 
Extinction Coeff 

(km-M 

Mode 

cient 

Large Particle Mode 
(mass = 10''Mg m-*) 

Extinction Coefficient 
(km"1) 

0.55 0.0482 
0.0506 
0.0566 

0.0164 
0,0163 
0,0162 

1.27 
1 .27 
1,26 

0.183 
0.183 
0.183 

1.06 0.0135 
0.0158 
0.0212 

0,0189 
0.0189 
0,0186 

1,42 
1.42 
1,40 

0.23 
0.14 
0.23 

3.8 0.0006 
0.0038 
0.015 

0,0064 
0.0137 
0.018 

0.80 
1,30 
1.52 

0.24 
0.18 
0.28 

9.3 0.0018 
0.0038 
0.0038 

0.0019 
0.0122 
0.020 

0.32 
1.22 
1.67 

0.22 
0.25 
0.26 

10.6 0.0003 
0.0038 
0.0043 

0.0015 
0,0064 
0.0095 

0.22 
0.81 
1.12 

0.26 
0.26 
0.26 
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TABLE 21o    VALUES OF COMPLEX REFRACTIVE  INDEXES FOR A BIMODAL PARTICLE SIZE 
DISTRIBUTION CHARACTERISTIC OF "LIGHT1' AND "HEAVY"  DESERT AEROSOL 
LOADINGS.    TYPICAL VALUES OF COMPLEX REFRACTIVE  INDEX ARE PRE- 
SENTED, AS WELL AS VALUES WHICH RESULT  IN MINIMUM AND MAXIMUM 
AEROSOL ABSORPTION, 

S-all Partie 

Light 'Aerosol 

e Mode 

Loading 

Large Partie le Node Saill  Particle Mi 

Heavy Aerosol Loading 

Partie! Mi* Larqe * Node 

««»«length Real  Index of 
Refraction 

Imaginary  Index 
of Refraction 

Real   Index 
Refractio 

of Imaginary  Index 
of Refraction 

Real  Index of 
Refraction 

I »aginary  Index 
of Refraction 

Real   Index 
Refraction 

of [■aginary  Index 
Df Refraction 

0.5S 
Minim« 
Typical 
Maxist« 

1.5? 
1.5* 
1.6 

0.01 
0.015 
0.03 

1.K 
1.5« 
1.6 

0.0001 
0.003 
0.OO5 

1.5 
1.5 
1.6 

0.0001 
0.003 
0.005 

1.5 
1.5 
1.6 

0.0001 
0.0001 
0.005 

1.06 
Minim» 
Typical 
Maximal 

1.5 
1.54 
1.6 

o.oi 
0.015 
0.06 

1.5 
1.5 
1.6 

0.OOO1 
0.001 
0.OO5 

1.50 
1.52 
1.60 

o.oooi 
0.001 
0.005 

I.S 
1.5 
1.6 

0.0001 
0.0001 
0.005 

3.B 
M1n1ai* 
Typical 

1.56 
1.6 
i.a 

0.02 
0.2 
1.0 

1.25 
1.5- 
1.47 

0.001 
0.02 
0.13 

1.25 
1.5 
1.8 

0.001 
0.02 
0.05 

1.25 
1.5 
1.8 

0.001 
0.01 
0.05 

9.3 
Minim« 
Typical 
Maxim« 

«.55 
2.5 
2.23 

3.65 
1.5 
1.07 

1.26 
2.2 
0.86 

0.05 
0.5 
1.4« 

1.26 
2.2 
0.86 

0.05 
0.5 
1.44 

3.43 
2.2 
1.72 

7.51 
0.5 
0.162 

10.6 
Minim« 
Typical 
Maxim» 

1.99 
2.2 
2.0« 

0.06 
1.25 
1.28 

1.19 
1.7 
1.7 

0.07 
0.2 
0.O6 

1.7 
1.7 
1.7 

0.015 
0.2 
0.6 

1.7 
1.7 
1.16 

0.015 
0.2 
0.17 

TABLE 22c    VALUES OF ABSORPTION COEFFICIENT  (KM"1)  CORRESPONDING TO THE 
COMPLEX REFRACTIVE  INDEX VALUES GIVEN  IN TABLE 21.    THE CALCU- 
LATIONS ARE FOR A BIMODAL PARTICLE SIZE DISTRIBUTION CHARACTER- 
ISTIC OF "LIGHT" AND "HEAVY"  DESERT AEROSOL LOADINGS GIVEN  IN 
TABLE 18. 

Liar t Aerosol Loading Heavy Aerosol Loading 

Wavelength 
(urn) 

Small  Particle Mode 
(mass  = 20yg irr3) 

Absorption Coefficient 
(km-M 

Large Particle Mode 
(mass  = 60ug m-3) 

Absorption Coefficient 
(km"1) 

Small 
{mass = 
Absorpt 

Particle Mode 
5 x 103ug nr3) 

ion Coefficient 
(km-M 

Large Particle Mode 
(mass  ■ lO^pg m-3) 

Absorption Coefficient 
(km-M 

0.55 0.0026 
0.0038 
0.0073 

0.0006 
0.0013 
0.0023 

0.007 
0.155 
0.225 

0.004 
0.004 
0.080 

1.06 0.00104 
0.0016 
0.006 

0.00003 
0.0003 
0.0015 

0.004 
0.037 
0.154 

0.006 
0.006 
0.092 

3.8 0.0004 
0.0036 
0.014 

0.0006 
0.0015 
0.0055 

0.008 
0.173 
0.38 

0.016 
0.042 
0.12 

9.3 0.0017 
0.0037 
0.0038 

0.0010 
0.0068 
0.0134 

0.11 
0.65 
0.99 

0.03 
0.11 
0.12 

10.6 0.0003 
0.0038 
0.0049 

0.0012 
0.0033 
0,0067 

0.05 
0.38 
0.64 

0.07 
©.12 
0.13 
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